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The oxidative addition of cyclopropanes to a transition metal Scheme 1. Oxidative Addition of Cyclopropyl Ketone
has been reported; however, its application to a catalytic reaction Ni©)

S S . o__. )0
has been limited due to the poor coordination ability of the cyclo- J f Ni
propanes. In the case of the cyclopropyl compounds having an n2-Ketone
unsaturated bond, such as methylenecyclopropane and vinylcyclo-
propane, the transition metal-catalyzed ring opening reaction is a Scheme 2. Reaction of Cyclopropyl Ketone with Ni(0)
very powerful method to construct cyclic compouidhe key to Ni(cod), R

Nickeladihydropyran

: . ; ) L o
the success of the ring opening reaction might bejtheoordination }o PBug /=|7= /\ﬁR
of an unsaturated bond to locate the cyclopropyl ring on a transition Toluene-dg NI quant
: . . 100°C,1.5h BusP” “pgy )
metal, which was suggested by a computational study on a rhodium quant 3 Ni(CO),(PBu3),
complex?' According to this, cyclopropyl ketones are another R=Me 1a
candidate for the ring opening reacti#srAlthough the coordination Ph 1b

of an aldehyde or ketone in th#-mode is very rare for the late

transition metals, the synthesis and reactivity of seugraldehyde Scheme 3. Reaction of Cyclopropyl Ketone with Ni(0)

and#n?-ketone complexes of nickel have been repoftedhus it R g(':(;:d)z 5_0\ _PCys R Oy R
seems very promising to attain a nickeladihydropyran complex by 0 Cr—— Ni g ----------
the oxidative addition of cyclopropyl ketones to nickel(0) (Scheme 100 °C, 1. é’h Y3P —<'/ R
1). Moreover, a nickeladihydropyran might be a transient key
intermediate in the reaction of cyclopropyl ketone with AiMe R =Me 2a quant 3a - 3" -
the presence of a catalytic amount of Ni(ag&d)yere, we report Ph 2b 72% 3b24%  3b'4%
the formation of a nickeladihydropyran by the oxidative addition

. . Scheme 4
of cyclopropyl ketones to nickel(0). Furthermore, catalytic cycload-
dition of cyclopropyl ketones to give cyclopentane derivatives Ph_ :g 22:3: ';g”"’z gph
proceeding through the nickeladihydropyran is also discussed. <(= Toenods —=2s LA (O

The reaction of cyclopropyl ketone with Ni(codind PBy at 100 °C, 153h

100 °C in tolueneds gave anzy?-enonenickel complexlg, 1b) © 3b76% © 3 17%
guantitatively (Scheme 2). The treatmentlefand1b with carbon Scheme 5

monoxide (5 atm) led to the dissociation of the coordinated enones, 10 mol% Nifcod)z o

(E)-3-penten-2-one andcE}-1-phenyl-2-buten-1-one, respectively.  pp, 10 mol% PCys 2 Oy Ph Ph Ph
In the presence of PGythe ring opening reaction of cyclopropyl o ?‘0 Toluene-ds . ()" &r 6 ---- @
methyl ketone also occurred to givenZn-enonenickel dimer 100°C,3h erh

complex @a) quantitatively (Scheme 3Ra was generated quan-
titatively as well even in the presence of 2 equiv of RChhe 3b53% 3b'10%  4b17%  4b'4%

molecular structure ofa was confirmed by the X-ray structure  lower temperature (48C) by H and3P NMR. The rapid formation
analysis. The reaction of cyclopropyl phenyl ketone under the same of the#2-ketonenickel complexs( 32% based on Ni) was observed

condition gave not only the correspondipgn?n-enonenickel in 5 min® Then, 5 decreased gradually, and a new compléx (

complex @b) but also a mixture of cyclopentane produ@s, 3b').6 having a resonance at5.2 in the'H NMR spectrum was generated
The cycloaddition of cyclopropyl phenyl ketone proceeded (40%). After 48 h,6 disappeared, an2b (60%) and a mixture of

catalytically (Scheme 4) to give a mixture 8b and3b' in 93% 3b and3b' (40% as a mixture) were generated with cyclopropyl

yield. At the end of the reaction, the formation2if (76% based on phenyl ketone (1 equiv) and 40% of Ni(cednd PCy remaining
Ni(cod)) was observed. Formall@p and3b' can be formed by the intact. To confirm if 6 is the expected nickeladihydropyran
[3 + 2] cycloaddition of cyclopropyl phenyl ketone withe)-1- intermediate, the isolation éfwas attempted. At room temperature
phenyl-2-buten-1-one. Somewhat surprisingly, addition of 1 equiv of for 5 h in THF, the reaction of cyclopropyl phenyl ketone with
(E)-1-phenyl-2-buten-1-one to the above catalysis mixture gave only Ni(cod), and PCy generated in 60% yield as confirmed by'P
a trace amount of a mixture 8b and3b’, due to the rapid forma- NMR. THF and COD were removed completely under reduced
tion of 2b at the initial stagé.Although cyclopropyl methyl ketone  pressure. The residue was dissolved in a minimum amount of
did not undergo the cycloaddition reaction at all under the reaction toluene, and the precipitation ga@es pale orange solids in 25%
condition in Scheme 4, the cross cycloaddition with cyclopropyl isolated yield. Elemental analysis is consistent with the expected
phenyl ketone competed with the homocycloaddition of cyclopropyl compositior® The 13C NMR resonance of the methylene carbon
phenyl ketone to give a mixture 8b, 3b', 4b, and4b’ (Scheme 5). attached to Ni is coupled with phosphorus. THeand'3C chemical

The reaction of cyclopropyl phenyl ketone (2 equiv) with Ni- shifts of the nickel enolate moiety-NiOC(Phy=CH—) are in the
(cod) (1 equiv) and PCy(1 equiv) in GDe was followed at the range of those for reported nickel enolatgs! The treatment 06
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with carbon monoxide (5 atm) led to the formation of the expected
lactone 7) quantitatively?2 which is also consistent with the
structure of6 depicted in Scheme 6.

The isomerization 06 to 2b in CsDg proceeded slowly at room
temperature. The insertion dE)-3-pentene-2-one proceeded smooth-
ly to give n3:51-enolatoalkylnickel comple8 quantitatively!3 In
the 13C NMR spectrum oB, the methylene carbon attached to Ni
is found upfield and coupled with phosphorus. Bdthand'3C res-
onances of the CH groupto acetyl group{CHC(O)CH) are coup-
led with phosphorus, which indicates that nickel is bound toothe
carbon. Furthermore, their chemical shifis4(96 for H,6 78.14 for
C) are too low for any*-bound C-enolate structure, and we assume
ann?-enolate structure fd. The chemical shift of the central carbon
(6 159.5) is also consistent with this structure. Under a carbon mon-
oxide pressure (5 atm® underwent the reductive elimination to
give a mixture ofd4b and 4b'. These observations suggest the
occurrence of the isomerization &prior to the reductive elimination.

The cycloaddition reaction might proceed as follows (Scheme
7). The cyclopropyl ketone coordinates to Ni(0) to fopfketone
complexA followed by the oxidative addition to give a nickeladi-
hydropyrarB. Thef-elimination and reductive elimination followed
by the tautomerization might generat&enonenickelC.1 In the
catalytic reaction, the concentration of free enone, which is expected
to react withB to give E (see Scheme 6), is supposed to be low since
enones may coordinate to Ni(0) so strongly that cyclopropyl ketones
are unable to replace the enone ligancinThus, we assume that
the second oxidative addition of cyclopropyl phenyl ketone takes
place atC, leading to the formation dd followed by the insertion
of an enone to generake The coordination ability of cyclopropyl
phenyl ketone is much higher than that of cyclopropyl methyl
ketonel® which might be one reason only cyclopropyl phenyl ketone
undergoes the second oxidative additionCtoThe generation of
the mixture of isomers could be rationalized by the rapid isomer-
ization betweerkE andF prior to the reductive elimination.

In conclusion, we demonstrated that a carbonyl group adjacent
to cyclopropyl group is a nice direction group to locate the
cyclopropane ring on the Ni(0) center, and the oxidative addition
proceeds easily to generate a nickeladihydropyran. Moreover, this
complex underwent the insertion oE)3-penten-2-one. Both

oxidative addition and insertion are important key steps in the
catalytic cycloaddition of cyclopropyl phenyl ketone reported for
the first time in this paper. Further studies on the reactivity of
nickeladihydropyran as well as applications to cross cycloaddition
reactions are in progress in our group.
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